Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fa-Hui Li, Han-Dong Yin,* Zhong-Jun Gao and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail: handongyin@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.048$
$w R$ factor $=0.149$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Octabutyl- $1 \kappa^{2} C, 2 \kappa^{2} C, 3 \kappa^{2} C, 4 \kappa^{2} C$-di- $\mu_{2}-3,5-$ dinitrobenzoato-1:2 $2 \kappa^{2} O: O^{\prime} ; 3: 4 \kappa^{2} O: O^{\prime}$-bis-(3,5-dinitrobenzoato)- $1 \kappa O, 4 \kappa O-d i-\mu_{3}$-oxo1:2:3 $\kappa^{3} O: O: O ; 2: 3: 4 \kappa^{3} O: O: O$-tetratin(IV)

The title compound, $\left[\mathrm{Sn}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{8}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{4} \mathrm{O}_{2}\right]$, is a cluster built up by inversion symmetry around the central $\mathrm{Sn}_{2} \mathrm{O}_{2}$ ring. Both unique $\mathrm{SnO}_{3} \mathrm{C}_{2}$ centres have distorted trigonal-bipyramidal geometry with O atoms in the axial positions.

Comment

The title compound, (I) (Fig. 1), is a cluster containing four Sn atoms and a total of 98 non-H atoms. The whole molecule is centrosymmetric with a central $\mathrm{Sn}_{2} \mathrm{O}_{2}$ core; the structure is similar to those of related compounds (Yin et al., 2003). The μ_{3}-bridging O 13 atom in the $\mathrm{Sn}_{2} \mathrm{O}_{2}$ ring is also attached to a $\mathrm{Bu}_{2} \mathrm{Sn}$ unit. In addition, the C1-carboxylate group coordinates to two Sn atoms in a bridging mode. The $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 2-\mathrm{O} 2$ carboxylate bond lengths are very different (Table 1).

The geometries of both the Sn atoms are distorted trigonalbipyramidal. For the exocyclic Sn 1 species, atoms O 1 and O 7 are in axial positions $\left[\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 7=169.4(2)^{\circ}\right]$ and the C atoms of the two butyl groups and O 13 are in equatorial positions. The sum of the equatorial $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ and $\mathrm{O}-\mathrm{Sn}-\mathrm{C}$ angles is 359.8°, indicating approximate coplanarity for these atoms.

The geometry around the endocyclic atom Sn 2 is slightly different from that of Sn 1 . Here, O 2 and $\mathrm{O} 13^{\mathrm{i}}$ [symmetry code: (i) $-x+2,-y+1,-z]$ are in axial positions $[\mathrm{O} 13-\mathrm{Sn} 2-\mathrm{O} 2=$ 162.4 (2) ${ }^{\circ}$] and the C atoms of the two butyl groups and O 13 are in equatorial positions. The sum of the equatorial $\mathrm{C}-\mathrm{Sn}-$ C and $\mathrm{O}-\mathrm{Sn}-\mathrm{C}$ angles is 343.4°, indicating a significant distortion from coplanarity for these atoms. This distortion may arise because of a short $\mathrm{Sn} 2 \cdots \mathrm{O} 7^{\mathrm{i}}$ contact of 2.815 (6) \AA

Received 6 March 2006 Accepted 7 March 2006
(sum of the van der Waals radii $=4.0 \AA$; Vollano et al., 1984). A short $\mathrm{Sn} 1 \cdots$ O8 contact of 2.949 (6) \AA is also present (Fig. 2).

Experimental

A mixture of dibutyltin oxide $(0.4978 \mathrm{~g}, 2.0 \mathrm{mmol})$ and 3,5 -dinitrobenzoic acid ($0.4242 \mathrm{~g}, 2.0 \mathrm{mmol}$) in methanol (80 ml) was heated under reflux for 8 h . The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/ethanol (1:1) giving blocks of (I) (yield 0.6419 g , 71%; m.p. 426 K). Analysis calculated for $\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{~N}_{8} \mathrm{O}_{26} \mathrm{Sn}_{4}$: C 39.85, H, 4.68; N 6.20\%; found: C 39.87, H 4.71, N, 6.23\%.

Crystal data

$\left[\mathrm{Sn}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{8}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{4} \mathrm{O}_{2}\right]$
$M_{r}=1808.11$
Triclinic, $P \overline{1}$
$a=10.705(2) \AA$
$b=13.333(3) \AA$
$c=14.360(3) \AA$
$\alpha=68.892(3)^{\circ}$
$\beta=78.297(3)^{\circ}$
$\gamma=80.285(3)^{\circ}$
$V=1862.0(7) \AA^{\circ}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.613 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3347 \\
& \quad \text { reflections } \\
& \theta=2.4-25.0^{\circ} \\
& \mu=1.41 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.46 \times 0.40 \times 0.37 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.564, T_{\text {max }}=0.624$
9788 measured reflections
6473 independent reflections
4391 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-17 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.149$
$S=1.00$
6473 reflections
442 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0672 P)^{2}\right. \\
\quad+5.5003 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=1.03 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{-3} 0.93 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

Sn1-O13	$2.021(5)$	$\mathrm{Sn} 2-\mathrm{C} 27$	$2.127(8)$
$\mathrm{Sn} 1-\mathrm{C} 19$	$2.116(8)$	$\mathrm{Sn} 2-\mathrm{O} 13^{\mathrm{i}}$	$2.151(5)$
$\mathrm{Sn} 1-\mathrm{C} 15$	$2.118(9)$	$\mathrm{Sn} 2-\mathrm{O} 2$	$2.277(5)$
$\mathrm{Sn} 1-\mathrm{O} 7$	$2.202(5)$	$\mathrm{Sn} 2-\mathrm{O} 7^{\mathrm{i}}$	$2.815(6)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.281(5)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.238(9)$
$\mathrm{Sn} 1-\mathrm{O} 8$	$2.949(6)$	$\mathrm{C} 1-\mathrm{O} 2$	$1.288(9)$
$\mathrm{Sn} 2-\mathrm{O} 13$	$2.055(5)$	$\mathrm{C} 8-\mathrm{O} 7$	$1.290(10)$
$\mathrm{Sn} 2-\mathrm{C} 23$	$2.123(8)$	$\mathrm{C} 8-\mathrm{O} 8$	$1.224(10)$
$\mathrm{Sn} 1-\mathrm{O} 13-\mathrm{Sn} 2$	$134.2(3)$	$\mathrm{Sn} 2-\mathrm{O} 13-\mathrm{Sn} 2^{\mathrm{i}}$	$103.7(2)$
$\mathrm{Sn} 1-\mathrm{O} 13-\mathrm{Sn} 2^{\mathrm{i}}$	$121.8(2)$		
Symmetry code: $(\mathrm{i})-x+2,-y+1,-z$.			

H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93(\mathrm{CH}), 0.97$ $\left(\mathrm{CH}_{2}\right)$ and $\left.0.96 \AA\left(\mathrm{CH}_{3}\right)\right]$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The highest peak is located $0.92 \AA$ from atom Sn1.

Figure 1
The molecular structure of (I), with 30% displacement ellipsoids (H atoms have been omitted for clarity). The unlabelled atoms are generated by the symmetry code $(2-x, 1-y,-z)$. Dashed lines indicate short $\mathrm{Sn} \cdots \mathrm{O}$ contacts.

Figure 2
The molecular structure with the n-butyl groups omitted for clarity. Atoms with the suffix a are generated by the symmetry code ($2-x, 1-y$, $-z$). Dashed lines indicate short $\mathrm{Sn} \cdots \mathrm{O}$ contacts

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

metal-organic papers

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

We acknowledge financial support from the Shandong Province Science Foundation and the State Key Laboratory of Crystal Materials, Shandong University.

References

Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M.(1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vollano, J. F., Day, R. O. \& Holmes, R. R. (1984). Organometallics, 3, 745-750.
Yin, H. D., Wang, C. H., Wang, Y. \& Ma, C. L. (2003). Chin. J. Chem . 21, 452456.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

